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ABSTRACT

Triboelectrification, or contact electrification (CE), is a common phenomenon in our daily life

and has been studied for more than 2600 years, with its first observation dating back to the

amber/wool rubbing experiment by Thales of Miletus. However, the underlying mechanism of CE

remains elusive, although many researchers suggest the transfer of electrons, ions, or charged materi-

als. Recently, CE is gaining popularity as a facile method to generate nanopatterned surface charge,

with widespread applications in nanoxerography, thin film self-organization, and data storage. Of

special interest is the CE induced by stamping nanotextured elastomer poly(dimethylsiloxane)

(PDMS) masters onto the target surface because it can facilely achieve high-fidelity charge gener-

ation and nanopatterning thanks to the excellent flexibility of PDMS.

Here, we developed a simple charge patterning technique by replicating nanotextured molds

with PDMS. It was found that the demolding action induced charges on the PDMS surface in a

pattern closely correlated with the nanotexture. This new technique not only enables facile fab-

rication of nanoscale charge patterns on insulator surfaces but provide more specific targets for

modeling and analysis of CE. By combining a variety of scanning probe microscopy technique

(AFM/KPFM/EFM), electrostatic modeling, and finite element analysis (FEM), we developed a

universal mechano-electric model than can explain how the generated nanopatterns are formed and

affected by the interfacial nanotexture’s morphology, as well as different material combinations.

It turns out that the cumulative distance of the elastomer’s tangential sliding during the inter-

facial separation plays the key role in shaping the charge distribution pattern. As an exemplary

application, we configured the generated nanopatterned surface charge into a electrohydrodynamic

lithography (EHDL) process, leading to nanovolcanos with 10 nm-scale craters. This EHDL process

can be potentially used for fabricating functional material and metasurfaces.
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CHAPTER 1. OVERVIEW

1.1 Introduction of Contact Electrification

Triboelectrification, or contact electrification (CE), is the generation of surface charge when

two surfaces are brought into contact and separated [16, 17, 18]. The investigation dates back to

more than 2600 years ago, with the report of amber charging against wool by Thales of Miletus

[19]. It has been widely used in a variety of technologies such as electrostatic separation [20], elec-

trophotography [21], and electrostatic trapping of nanometric objects [22]. However, the underlying

mechanism remains elusive and the origin of the transferred charge carriers is still under debate

[23, 24, 25], especially between insulators, due to the fact that their surface states are usually not

well defined. It’s commonly assumed that contact electrification requires a difference in the material

properties and the gained surface charge distribution is spatially homogeneous [26, 27, 28].

Recently, contact electrification of elastomer surfaces has been attracting substantial interest,

with the resulting tribocharges already playing crucial roles in energy harvesting [29, 30, 31], mass

spectrometry [32], and electronics [33, 34]. It’s demonstrated that CE can actually happen between

identical materials [1, 35, 36]. In addition, the resulted surface charge distribution is not uniform,

but a random “mosaic” of oppositely charged regions of nanoscopic dimensions [1], in contrast to

the conventional picture of uniform charging.

As shown in Fig. 1.1, the conventional view assumes that after contact electrification, one

surface is charged positively uniformly, while the other is charged negatively uniformly. However,

the mosaic picture shows that both surfaces carry interleaved domains that are negatively and

positively charged. With Kelvin probe force microscopy (KPFM) to measure the surface potential

maps, it’s found that the surfaces after contact electrification carry random “mosaic” of positively

charged and negatively charged nanodomains. The working principle of KPFM and related technical

details will be described in the next chapter. In addition, Fig. 1.2c shows that similar “mosaic” also
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Figure 1.1 Scheme of the possible scenarios after contact electrification - two surfaces are

uniformed charged with opposite signs of charge, or two surface both show

negatively and positively charged nanodomains. Adapted from [1].

happens in the contact electrification between identical materials. Before the contact electrification,

the pristine PDMS film or PC film were not charged, showing close to zero surface potential

(Fig. 1.2b). After contacting with other materials, either the identical (PDMS-PDMS) or different

material combinations (PDMS-PC), the potential maps consist of a mosaic of positive and negative

regions. Further statistical analysis revealed that the mosaic is actually not pure random, but can

be described as random scalar fields involving two length scales, one at several hundred nanometers

and the other at tens of nanometers [1]. Similarly, identical polytetrafluoroethylene (PTFE) film

were used to study the curvature effect during contact electrification [35].

Recently, a similar tribocharging has also been observed on the surface of the elastomer PDMS

as the result of replica molding [37]. The ensuing studies revealed that the level of tribocharging

is strong enough to influence some microfluidic functionalities, such as channel electrophoresis

[38, 39, 40]. So far, however, this replica molding- induced tribocharging phenomenon has been

studied only on flat, untextured elastomer surfaces. It is rather ironic since replica molding is

the primary method for surface texturing of the PDMS. Questions regarding how those textures

affect the tribocharge’s generation and distribution patterns, especially at nanoscale, have been
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Figure 1.2 (b) Before contact electrification, the surface potential map is approximately

uniform. (c) (d) However, the contact-charged surfaces features a mosaic of

positive and negative nanodomains. More importantly, this contact electrifica-

tion happens between not only different materials PDMS-PC, but also between

identical material, PDMS-PDMS Adapted from [1].

left unanswered to date. This dissertation is devoted to answer these questions by combining

multiphysical investigation techniques and establish new applications.

1.2 Nanopatterning of Surface Charge and Applications

Nanopatterning of tribocharge on material surface is playing an important role in many branches

of nanotechnology, such as nanoxerography [41, 42], thin film self-organization [43], and data storage

[44, 45]. A variety of techniques have been developed for its realization, falling into two main

categories, scanning probe based direct writing and micro-contact printing. In direct writing-

type techniques, the material surface is scanned with highly confined sources of electric charges such



www.manaraa.com

4

Figure 1.3 Schematics of contact mode AFM induced charge patterning on PMMA thin

film and its subsequent application to nanoxerography. Adapted from [2].

as scanning probes [46, 44, 47, 48, 2, 8], focused ion beams [49], or liquid jets [50]. For example,

AFM itself is a versatile instrument for charge writing, both positive and negative depends on the

voltage applied [2]. As shown in Fig. 1.3, the AFM probe is polarized by the external voltage

and the charges can be injected into the polymethylmethacrylate (PMMA) thin film. The desired

charge pattern can be controlled by the scanning of the AFM probe with high spatial resolution.

Right after the charge patterning, the surface potential distribution can be measured with KPFM.

Various complicated surface charge patterns can be achieved, as shown by the potential images

in Fig. 1.4. The electrostatically patterned samples are then incubated in the desired colloidal

dispersion and then immersed in an adequate solvent for development. Final drying process leads

to directly assembled nanoparticles guided by the charge pattern, as shown by the topography

images in Fig. 1.4.

The direct writing method demonstrates high resolution, but the scanning rate is extremely

slow and expensive infrastructures are usually required. In contrast to the serial direct writing,

researchers developed an electrical contact printing method, in which a micropatterned electrode
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Figure 1.4 KPFM surface images and the topography images after the directed assemblies

of various nanoparticles. Adapted from [2].

was placed in conformal contact with the target surface with an external voltage applied [51, 3, 52].

For example, Jacobs et al. developed the submicrometer patterning of charge based on the electric

contact printing method [3]. The fabrication processes are shown in Fig. 1.5. The PDMS stamp

with patterns was evaporated with Cr and Au to make the surface conductive. The metal-coated

PDMS stamp was then placed in contact with the PMMA film on a n-doped silicon wafer. The

contact between the PDMS electrode and the PMMA film is intimate thanks to the excellent

flexibility of PDMS. Then an external voltage was applied in between the top PDMS electrode and

the silicon substrate, leading to the electron transfer to the PMMA film. The corresponding charge

pattern was determined by the initial pattern on the PDMS stamp.

This contact printing method enables the patterning of the material surface in a parallel process.

In this method, however, the material surface to be patterned needs to be mounted on conductive

surfaces, which serve as the opposite electrodes in the patterning process. To address this issue,

the direct contact electrification [53] was developed, eliminating electrodes or any external biasing.
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Figure 1.5 Principle of the electrical contact printing. Adapted from [3].

For example, the thermally [51] or chemically [52, 54] treated poly(dimethylsiloxane) (PDMS)

stamps can be used to induce patterned surface charge through contact electrification without any

electrodes or external biasing.

1.3 Dissertation Organization

This dissertation is consisted of six chapters, providing in Chapter 1 an overview of contact

electrification and charge patterning techniques and corresponding applications. In Chapter 2,

the working principles of the KPFM and EMF are described in detail. Their applications and

limitations are also briefly discussed. Chapter 3 then presents our replica molding induced charge

nanopatterning and the charge characterization results from the replica molding with different
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materials combinations and varying interfacial morphologies. The electrostatic modeling is also

described for the charge density estimation. Chapter 4 is dedicated to the finite element analysis

of the replica molding process. A mechano-triboelectric model is established for the nanoscale

contact electrification. The key factor is pointed out governing the final charge distribution pattern.

Chapter 5 deals with an exemplary application of the generated nanopatterned surface charge on

elastomer, that is, electrohydrodynamic naonlithography (EHDL). The numerical model of the

EHDL process is established. In the final chapter, a brief summary and several future directions

are discussed.
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CHAPTER 2. SURFACE CHARGE CHARACTERIZATION TECHNIQUES

Before the introduction of our replica molding based charge nanopatterning technique, we will

give an overview of the surface charge characterization techniques, especially those with nanoscale

resolution based on scanning probe microscopy. In this chapter, we will start with an overview

of the history of surface charge characterization techniques, especially the Kelvin method working

in macroscopic scale. The second and third section present the working principles of scanning

probe-based nanoscale surface charge characterization methods, Kelvin probe force microscopy

(KPFM) and electrostatic force microscopy (EFM). Both will be extensively used throughout this

dissertation. Then we will give an overview of the applications of KPFM and EFM in different

fields. Finally, the scanning artifacts and limitations are briefly discussed.

2.1 Introduction

In 1898, Lord Kelvin originated a macroscopic method to measure surface electronic properties

[4]. The metallic probe is vibrating above the sample surface to form a simple capacitor arrangement

and the voltage applied to the probe is adjusted so that no current is induced by the vibration, as

shown in Fig. 2.1. The induced current is written as

Idc =
dC

dt
(Vbias − VCPD) (2.1)

where C is the capacitance between probe and sample, Vbias is the external voltage applied and

VCPD is the contact potential difference between the probe and sample surface. Here the presence

of surface charge is not considered and will be discussed in detail later. Thus the voltage applied

to the probe when the induced current is zero measures the contact potential difference between

the probe and the sample surface. When using probe made of inert material (gold, platinum,

iridium) with well defined work function, the sample surface potential can be determined. The
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Figure 2.1 Scheme of the Kelvin method working in the macroscopic scale. Adapted from

[4]

spatial resolution depends on the probe size and scanning step size and is usually around 0.3 mm

[55].

When extending this principle to the micro- or nano- scale, however, the sensitivity is very

poor since the induced current is insufficient from capacitor with small plate size, especially with

a probe size of tens of nanometer. Instead, the electrostatic force between the probe and sample

surface was utilized. To achieve a lateral resolution in the nanometer range, the Kelvin method

was combined with the atomic force microscopy (AFM), which was invented in 1986 [56] to solve

the limitation that only conducting surfaces can be used in scanning tunneling microscopy (STM)

[57]. Before describing the microscopic version of the Kelvin method, we will briefly introduce the

working principle of AFM, especially the tapping mode.

In the early stage, the AFM was working in the contact mode and the sample surface could

be damaged or deformed due to the lateral forces between the scanning probe and sample surface

(Fig. 2.2), especially for biological and polymeric materials. The non-contact mode AFM was later

developed to minimize the interaction force between the scanning probe and the sample surface by

maintaining the contact only for a short time, the so-called tapping mode. In the tapping mode,

the cantilever oscillates at its resonance frequency and the probe is in touch with the sample surface
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Figure 2.2 Interatomic force versus distance curve. Adapted from [5]

for a short period of time at each cycle. In Fig. 2.2, the cantilever is oscillating intermittently in

the attractive regime and repulsive regime. During the scanning, the oscillating amplitude at the

operating frequency is maintained at a constant level, realized with the amplitude setpoint, so that

the relative position between the probe and sample surface is kept the sample. Thus the trace of

the probe reflects the topography variation of the sample surface.

2.2 Kelvin Probe Force Microscopy

Kelvin probe force microscopy is a representative combining the non-contact atomic force mi-

croscopy and the Kelvin method. It was first reported by Nonnenmacher et al. [58] and Weaver

et al. [59] in 1991. The main enabling factor of KPFM is the sensitive cantilever beam that can

measure the electrostatic force by employing an optical readout on the back side of the cantilever.

Thus the local contact potential difference or surface charge distribution can be accessed. It’s

typically implemented in a two-pass scheme, as shown in Fig. 2.3. In the first pass, the surface

topography is measured in the tapping mode by maintaining a contact distance between the probe

and the sample surface. In the second pass, the probe is lifted up by tens of nanometer based on the
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Figure 2.3 Schematics of the working principle of the KPFM implemented in a two-pass

scheme. Adapted from [6]

stored topography information to measure the long-range electrostatic force. This can eliminate

the inaccuracy caused by the variation of the distance between the probe and sample surface.

In a typical KPFM setup, an ac-voltage Vac sin(ωact) is applied to oscillate the cantilever and a

dc-voltage Vdc is applied to compensate the electrostatic force in the second pass. With a parallel-

capacitor model, the electrostatic force can be expressed as

Fel = −1

2

∂C

∂z
[Vdc − VCPD + Vac sin (ωact)]

2 (2.2)

in which VCPD is the contact potential difference between probe and sample.

The electrostatic force can be decomposed to three terms, dc component, single-frequency

component, and double-frequency component.

Fdc = −∂C
∂z

[
1

2
(Vdc − VCPD)2 +

V 2
ac

4

]
(2.3)

Fωac = −∂C
∂z

(Vdc − VCPD)Vac sin (ωact) (2.4)

F2ωac =
∂C

∂z

V 2
ac

4
cos (2ωact) (2.5)
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Figure 2.4 AM- and FM-mode measurements on a HOPG sample with Au islands.

Adapted from [7]

The applied dc-voltage is adjusted to minimize the single-frequency component, leading to VCPD =

Vdc. This technique results in similar surface potential imaging as that in the conventional Kelvin

method, but with much higher spatial resolution and sensitivity in the surface potential.

There are mainly two different working modes in KPFM depending on the feedback variable

utilized during the scanning, amplitude modulation (AM) and frequency modulation (FM). In AM

mode, the applied dc-voltage is controlled by minimizing the amplitude of the induced oscillation at

the ac-frequency to zero, as described above. While in the FM mode, the variation in the frequency

shift at the ac-frequency is minimized. In other words, the scanning probe senses the force gradient
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Figure 2.5 The KPFM measurement on the testing sample consisted of gold and aluminum

patterns on a silicon wafer. The thickness of gold and aluminum is around the

same, while the contact potential difference shows different values, reflecting

the difference in work function of different materials.

generated from the contact potential difference

∆f0 (ωac) ∝
∂Fωac

∂z
=
∂2C

∂z2
(Vdc − VCPD)Vac sin (ωact) (2.6)

As described by the above equation, the AM mode is sensitive to the electrostatic force, while

the FM mode is sensitive to the electrostatic force gradient. They are different in terms of the

spatial resolution and resolution in the contact potential difference. One example is the study on

dendritic gold islands on highly oriented pyrolytic graphite (HOPG) with both operation modes

[7]. The results are shown in Fig. 2.4. The contact potential difference between gold and graphite

is around 40 meV and 120 meV in the AM mode and FM mode, respectively. This large difference



www.manaraa.com

14

Figure 2.6 Schematics and results of the KPFM used to characterize the surface charge

distribution induced by the contact mode AFM. Adapted from [8].

can be explained by the fact that the AM mode is sensitive to the long range electrostatic force and

thus can sense a larger area. The measured contact potential difference is actually an average over

a large area. In the FM mode, however, the electrostatic force gradient is relatively short-ranged

and the average is over a relatively smaller area, leading to larger contrast in the measured contact

potential difference. Similarly, the spatial resolution is also better in FM mode, as shown in Fig.

2.4.

After its invention, KPFM has been widely used in solar cell materials [60], adatoms and

admolecules [61, 62], low-dimensional systems [63, 64, 65, 66], local work function [67], biological

systems [68, 69, 70]. A basic example is the work function difference of different material like
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Figure 2.7 KPFM results of DNA and transcription complexes of DNA. Adapted from [9].

metals or semiconductors. For example, a commonly used testing sample is the gold and aluminum

patterns on a silicon wafer. The surface topography and surface potential maps are shown in Fig.

2.5a and b, respectively. The cross sectional scans along the blue line in a and red line in b are

superimposed in c for facile comparison. It’s clear that the thickness of the aluminum and gold films

is around the same, ∼ 50 nm. The surface potential scanning, however, shows a difference around

0.65 V between aluminum and gold. Considering the same AFM probe used in the scanning, this

difference in surface potential originates from the work function difference between aluminum and

gold. The work function [71] of aluminum and gold is around 4.06-4.26 eV and 5.10-5.47 eV. The

difference is in good agreement with the measured difference in surface potential.

The KPFM can be also used for the surface charge imaging on insulators. For example, the

contact mode AFM was used to induce the contact electrification at nanoscale and the following

KPFM mode scanning characterized the surface charge distribution and subsequent diffusion [8].

As shown in Fig. 2.6, the AFM was first operated in contact mode to induce friction patterns on
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the SiO2 film. The surface topography and surface potential were then subsequently measured in

situ with KPFM. The surface topography shows negligible variation while the surface potential

shows a clear contrast between the rubbed and intact areas. Since the work function difference is

the same across the whole area, the contrast in the surface potential is attributed to the induced

surface charge. The surface charge density can be estimated from the surface potential difference

between the rubbed and intact area ∆V with a parallel capacitor model

σ =
∆V ε0εSiO2

tSiO2

(2.7)

where ε0 is the vacuum dielectric constant, tSiO2 and εSiO2 are the thickness and relative dielectric

constant of SiO2, respectively.

In biological systems, KPFM can also be applied to measure the surface potentials and electro-

static interaction, including voltage-gated ion channels, protein folding and assembly, and electroac-

tive cells and electrotransduction. One example is the stretched single DNA molecules [9] shown in

Fig. 2.7. The dark area of the surface potential image shows low electric potential, corresponding

to the DNA and the polymerase transcription complex.

2.3 Electrostatic Force Microscopy

Instead of compensating the electrostatic force by applying a dc-voltage in KPFM, it’s also

possible to measure the magnitude of the force directly, that is, the EFM. It has been widely used for

charge characterization on insulators such as epoxy resin[72], nanocomposite[13], and adatoms[10].

By tracking the electrostatic force generated by the surface charge, EFM can directly measure

the charge’s polarity and density even on highly insulating substrates[73, 11], complementing the

results of KPFM.

In our setup, the sample substrate was grounded and we measured the resonance frequency shift

∆f0 of the cantilever probe as a function of the dc-voltage Vdc applied to the probe. The frequency

shift is proportional to the gradient of the force, as given by [72, 73, 11]

∆f0
f0
≈ − 1

2kc

dFdc

dz
= − 1

2kc

d

dz
(
1

2
C ′V 2

dc +
qsqt

4πε0z2
) (2.8)
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Figure 2.8 (a) EFM results of the measurement above Au− and Au0. (b) and (c) are the

STM images before and after the EFM measurements, confirming the charg-

ing-switching event and the lateral position is maintained. Adapted from [10].

where f0 is the resonance frequency of the probe, kc is the cantilever spring constant, z is the

vertical distance between the sample surface charge qs and the image charge qt = −qs + C · Vdc on

the probe. Fdc is the force exerted on the probe, consisting of the capacitive contribution and the

Columbic attraction, where C is the probe to substrate capacitance and C ′ the first derivative with

respect to z.

Carrying out the differentiation in Eq. 2.8 reveals that the resonance frequency shift ∆f0 is

quadratically related to Vdc as

∆f0 = − f0
2kc

(
C ′′

2
· V 2

dc −
qs

4πε0

(
2C

z3
− C ′

z2

)
· Vdc +

q2s
2πε0z3

)
(2.9)
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Figure 2.9 The EFM results of the 12 nm thick SiO2 film on gold surface. Adapted from

[11].

It is straightforward to show that the frequency shift ∆f0 maximizes at

V ∗dc =
qs

4πε0

1

C ′′

(
2C

z3
− C ′

z2

)
(2.10)

With 1
C′′ (

2C
z3
− C′

z2
) always positive, the polarity of the surface charge can be determined from the

sign of V ∗dc. In addition, the surface charge qs itself can be determined from the y-intercept as

|qs| =

√
4πε0kch3v |∆f0 (Vdc = 0)|

f0
(2.11)

Thus, we are able to determine the charge polarity and magnitude with EFM.

The typical results from EFM measurement is the quadratic dependence of the frequency shift

as a function of the applied dc voltage, as evidenced by equation 2.9. In Fig. 2.8, the gold atom

sitting on top of an ultrathin NaCl layer was measured with EFM first. Then the charge state was

switched by applying a bias voltage pulse of about -1 V for a few seconds. After switching, the EFM

measurement was done again. The parabolic fitting shows that the contact potential difference of

Au− has shifted by around 30 meV.

The EFM has also been used to determine the nanoscale dielectric constant of thin insulating

layers [11]. The 12 nm thick SiO2 film was deposited on the gold surface and the measured with
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Figure 2.10 Topography and KPFM images of tobacco mosaic viruses deposited on silicon

dioxide. Scale bars are 500 nm. Colour scales are 25nm (topography im-

ages) and 3mV (KPFM images). Top: images containing ac cross-talk effects

Bottom: images free of ac cross-talk effects. Adapted from [12].

EFM. The quadratic fitting of the frequency shift dependence on the applied voltage gives the

estimation of the dielectric constant. This also enables label-free identification of materials with

different dielectric constants [74].

2.4 Artifacts and Limitations

From the principle of KPFM, the single-frequency component of the electrostatic force Fωac

should be nullified. The contact potential difference can be determined independently from mea-

surement parameters. However, this condition is usually difficult to reach in real experiments and

the measured contact potential difference VCPD is affected by the measurement environments, tip

geometry, instruments effects, and chosen experimental parameters. A detailed overview of all the

artifact and limitations is out of the scope of this thesis and can be found in [75, 76, 77]. In this

section, we will mainly discuss the cross-talk effect from the topography and the limitations from

the experimental point of view.
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Figure 2.11 EFM image measured at a filler particle with varying tip-sample bias. Adapted

from [13].

As shown in Fig. 2.10, the most important effect of the cross-talks is the artificial footprint

of the sample topography onto the KPFM images [12]. In Fig. 2.10, the tobacco mosaic viruses

(TMVs) were transferred to the silicon dioxide substrate. It’s known that no charge transfer occurs

in this process. The TMVs were then investigated using KPFM with or without cross-talks by

setting different drive phase. From the comparison of the topography image and potential image,

it’s obvious that the cross-talks causes the footprint of the topography image onto the potential

measurement, leading to surface potential variations that doesn’t really exist.
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Another limitation of EFM is that the data collection during the scanning needs to be done

for multiple applied dc-voltage, as shown in Fig. 2.9. Figure 2.11 also shows the scanning with

different dc-voltage applied to the probe. This means the scanning time taken in the measurement

is several time longer than that in KPFM since multiple frames of the map need to be collected

and the parabolic fitting is then used to determine the measurement variables.
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CHAPTER 3. REPLICA MOLDING-BASED NANOPATTERNING OF

TRIBOCHARGE

In this chapter, we will start with the fabrication process of our replica molding-based charge

patterning technique. The following two sections deal with how the nanopatterned tribocharge

is affected by the different material combinations and interfacial morphology. Later part of this

chapter presents the electrostatic molding to estimate the surface charge density in the special

ring-type charge distribution.

3.1 Replica Molding-based Nanopatterning of Tribocharge on Elastomer

Tribocharging of elastomer surface is attracting substantial interest, with the resulting tri-

bocharges already playing crucial roles in energy harvesting, mass spectrometry, and electronics.

The tribocharge’s origin, although still under study, is often attributed to the transfer of electrons

or ions between material surfaces during their electrical or frictional contact. Of recent interest is

the tribocharging of poly(dimethylsiloxane) (PDMS) surface after replica molding which turns out

to be strong enough to influence microfluidic channel electrophoresis. It is rather ironic that such

replica molding-induced tribocharging phenomenon has been studied only on untextured elastomer

surfaces, such as microfluidic channel walls, given that replica molding is a very effective method

for their nanotexturing. Questions regarding how such nanotexturing impacts the generation and

distribution of the tribocharge are not answered yet.

Here, we carry out a multi-physical study to answer the questions and also to establish a

useful application for the intriguing phenomenon. It also turns out to be a straightforward charge

nanopatterning method. As our model nanostructure, we used arrayed PDMS nanocups replicated

from a polycarbonate (PC) nanocone array (Fig. 3.1).
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Figure 3.1 Replica molding-based tribocharging and its use in EHDL. a After being replica

molded from a nanotextured polycarbonate (PC) mold, the elastomer replica’s

surface acquires tribocharges distributed in close correlation with the nanotex-

ture. b The resulting electric field can subsequently shape the photopolymer

at nanoscale through EHDL. In this work, the PDMS nanocup, replicated from

a PC nanocone, acquires a nanoring-shaped tribocharge which shapes the pho-

topolymer into a nanovolcano

To fabricate the tribocharged PDMS nanocup array, we first prepared a PC mold with a 750

nm-pitch triangular array of nanocones (500 nm in base diameter, 150 nm in height, about 1×1

cm2, Microcontinuum Inc.) and then poured liquid phase PDMS (Sylgard 184, Dow Corning)

mixed with the curing agent at 10:1 wt. ratio. Upon its complete solidification, we peeled it off

from the mold, obtaining a matching array of nanocups. The surface topography, examined with

scanning electron microscopy and atomic force microscopy (AFM) in the tapping mode, are shown

in Fig. 3.2 and Fig. 3.3a, respectively. The average depth d was 153±13 (s.d.) nm. To elucidate

the polarity and the distribution pattern of the tribocharges on the replica molded PDMS surface,

the surface potential was also measured through KPFM and plotted in Fig. 3.3b.

From the comparison of the scans in Fig.3.3a, b, it is evident that the positions of the negative

potential wells closely match those of the nanocups’ apertures. The surface topography and po-
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Figure 3.2 Morphology of PDMS nanocups This scanning electron micrograph of the

PDMS nanocups, taken with the sample stage tilted by 55 degrees, clearly

shows the regularly arrayed apertures of the nanocups and the flat interstitial

area between them. Scale bar: 2 µm.

tential profiles shown in Fig. 3.3c, superimposed for facile comparison, further confirm their close

correlation. Since the work function difference between the PDMS surface and the AFM probe is

almost the same across the scanning area, the wells in the surface potential are induced mainly by

the tribocharges [8]. It also indicates that the PDMS surface was negatively charged, which agrees

well with the negative tribocharging of PDMS by PC reported by Baytekin et al. [1]. Interest-

ingly, the surface potential exhibits peaks near the center of the nanocups, which yields valuable

information on the charge distribution within the nanocups.

3.2 Effect of Materials Combination

To investigate the effect of different material combinations on the generated nanopatterned

tribocharge, we adopted poly(ethyleneterephthalate) (PET) plates (Microcontinuum Inc.) nan-

otextured with triangular nanocone arrays. The pitch, diameter, and height are identical to the

PC master used in the previous chapter. The charge-affinity of polycarbonate is lower than that of

PET [78]. The replicated PDMS nanocups were examined with KPFM in a similar manner.
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Figure 3.3 KPFM-based imaging and analysis of tribocharge distribution. a

AFM image of the PDMS nanocup array’s surface topography. b KPFM im-

age of the surface potential VCPD at the same spot. (Scale bars: 1 µm) c

Superimposed cross-sectional profiles of the surface topography and potential

along the scan lines in a, b. The pattern overlap clearly indicates that the

inner cavity of the nanocup is negatively charged.

Figure 3.4a, b show the topography and surface potential, respectively. Their cross-sectional

profiles, obtained along the dotted and solid lines in Fig. 3.4a,b, respectively, are superimposed

in Fig. 3.4c for facile correlation. Aside from a slight azimuthal asymmetry, the potential pattern

takes the form of a ring and is located primarily around the nanocup’s rim. Compared with the

case of PC/PDMS combination, the only significant difference is the vertical flipping of the surface

potential profile. Fig. 3.4c shows that the ring-shaped potential we just obtained from the PET

mold takes a “dip-in-the-peak” profile which is a signature trait of a positive ring-charge [3]. In

the previous case based on PC master molds, however, we observed a “peak-in-the-well” potential

profile. It is inverse to the “dip-in-the-peak” profile and also a signature trait of the negative
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ring-charge. This suggested reversal of polarity indicates that the charge affinity of PDMS may lie

between those of PC (-5 nC/J) and PET (-40 nC/J) [78].

Figure 3.4 KPFM-based imaging and analysis of tribocharge distribution of the PDMS

nanocups replicated from PET. a AFM image of the PDMS nanocup array’s

surface topography. b KPFM image of the surface potential VCPD at the same

spot. (Scale bars: 500 nm) c Superimposed cross-sectional profiles of the sur-

face topography and potential along the scan lines in a, b.

3.3 Effect of Surface Topography

With our basic conjecture on the aspect ratio’s role in the nanoscale CE reaffirmed, we proceeded

to investigate how the changes in the aspect ratio affect the nanoscale CE. we adopted PET plates

with three different types of triangular nanocone arrays. No surface modification, physical or

chemical, was performed to the master mold. Figure 3.5c shows the basic geometry of the PDMS

nanocups demolded from the PET nanocones. The radius a and center-to-center spacing p of the
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Figure 3.5 (a) A nanocone-textured PET mold is replicated with PDMS. (b) Demolding

of the PDMS replica tribocharges the PDMS surface. (c) The PDMS surface

is characterized by AFM, KPFM, and EFM. The blue curve indicates the tip’s

scanning path during KPFM and EFM. a, p, and hv represent the nanocup’s

aperture radius, center-to-center spacing, and the tip-surface separation which,

in our setup, are 250, 750, and 100 nm, respectively. The nanocup’s depth h was

varied. (d) The setup for finite element analysis of the demolding action. (e)

The computed distribution of the normalized frictional stress σfn on a PDMS

nanocup (h = 153 nm). The red arrows indicate the direction of replica/mold

separation.

nanocone were fixed at 250 and 750 nm, respectively. The nanocone’s height (hence the nanocup’s

depth) h was varied to be 154.3± 7.8 nm (sample A), 93.5± 8.5 nm (sample B), and 50.2± 1.1 nm

(sample C). The corresponding aspect ratios (AR ≡ h/a) were 0.62, 0.37, and, 0.20, respectively.

Upon demolding, we probed the nanocups by atomic force microscopy (AFM) and KPFM (Fig.

3.5c) to study the nanotexture’s impact on the friction and charge distribution

We used samples B and C which exhibit increasingly lower aspect ratios of 0.37 and 0.20,

respectively. The second and third columns of Fig. 3.6 show the results. Comparison of the

KPFM results, facilitated by their juxtaposition, reveals that the charge distribution pattern in each
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Figure 3.6 AFM surface topography (a-c) and the corresponding surface potential maps

(d-f) of the samples A (AR = 0.62), B (AR = 0.37), and C (AR = 0.20),

respectively. (g-i) The topographic and potential scans obtained along the

blue dashed lines in (a-c) and the solid red lines in (d-f), respectively, are

superimposed for facile correlation. (Scale bars: 500 nm.)

nanocup changes gradually yet significantly from the original ring-shape (AR = 0.62) to a partial

eclipse (AR = 0.37) and a dumbbell (AR = 0.20) as the aspect ratio decreases. The nanotexture

indeed controls the friction pattern through its shape. Note that the potential variation across

the PDMS nanocups becomes lower as the aspect ratio decreases due most probably to the weaker

frictional stress during the demolding action.

Note that the red-to-blue transitions in Fig. 3.6d-f indicate the decrease in the surface potential

level generated by the tribocharges but not necessarily reversals in their polarity. The highly

insulating nature of PDMS and the substantial thickness of the PDMS nanocup array (> 1 mm)
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made it impossible to directly determine the surface potential or the tribocharge’s polarity in the

absolute sense. This issue will be addressed in the next chapter with the help of EFM.

3.4 Electrostatic Modeling

To extract more information from the KPFM results in Fig. 3.3, we performed iterative elec-

trostatic modeling which reconstructs the charge distribution by repeatedly adjusting the model

charge distribution until the resulting electric potential exhibits a good agreement with the exper-

imental measurement. Among the salient features of the KPFM result in Fig. 3.3b, c, of special

concern was the peak inside the potential well.

To compute the electric potential arising from the electric charges distributed on the nanocup’s

inner cavity surface, we first decomposed the inner cavity surface into a stack of thin annular strips

with varying radii. Then we multiplied the preset surface charge density ρs to the surface area of

each annular strip to determine the corresponding total charge. We then modeled each annular

strip as a ring charge distribution. The electric potential V arising from a ring charge distribution

with radius a is given in closed form as [79]

V =
Q

2π2ε0
·
K(
√

4aρ
a2+ρ2+h2+2aρ

)√
a2 + ρ2 + h2 + 2aρ

(3.1)

where Q, ρ, h, and ρ0 are the total charge of the ring, the radial and vertical displacement of the

observation point from the center of the ring, and the electric permittivity in vacuum, respectively.

K is the elliptic integral of the first kind. Then we summed up the contributions of the ring charges

at each observation point. The number of the stacked rings was increased until the final summation

converged.

As shown in the charge distribution models and the corresponding electric potential computation

results shown in Fig. 3.7a, b, such a center peak appears when a ring or annular strip-shaped

charge distribution is dipped or penetrated by an AFM probe’s tip and it becomes increasingly

higher as the charge distribution becomes more concentrated around the nanocup’s rim, reducing

Lch. In contrast, the peak becomes much lower in the case of a half-dome charge distribution (
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Lch = 0.5Ltot ) and almost disappears in a uniform dome charge distribution ( Lch = Ltot ). Jacobs

et al.[3] observed “dip-in-the-peak” potential profiles, the inverse of our “peak-in-the-well” profile,

from their positive ring charges.

In Fig. 3.3a, the average ratio between the center peak height and the potential well depth

was ∼ 0.46 with the average potential well depth at 6.9±0.7 (s.d.) V. As shown in Fig. 3.7e, the

best match was obtained when the tribocharge was configured to form a ∼55 nm-wide annular

strip (Lch = 0.18 · Ltot) around the rim. Under the assumption that the tribocharge is distributed

in a bipolar mosaic form [32, 80, 81, 82, 83, 84] with the overall polarity determined by the net

charge, the corresponding net surface charge density is approximately −9.9 mC m−2 or 0.6 net

negative elementary charges per 10 nm2, which is in order-of-magnitude agreement with the result

reported by Baytekin et al. (1 net negative elementary charge per 10 nm2) for the same material

combination (PDMS-PC) [1]. The fact that the potential stayed below the rim level throughout the

PDMS nanocup’s cavity strongly suggests that any portion of the PDMS nanocup not covered by

the negative charge was uncharged or positively charged at a negligibly low charge density. Either

way, our model of negative ring charge prevails.
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Figure 3.7 d A schematic diagram of the surface potential computation setup. Ltot and

Lch represent the arc lengths measured from the nanocup’s rim to the bottom

and the end point of the surface charge distribution, respectively. H0 is the

vertical gap maintained between the probe tips and the PDMS surface. The

white dots represent the probing points for the surface potential measurement

and evaluation. e The computed surface potentials for different charge distri-

butions. They clearly show that the center peak rises within the potential well

as the charge distribution becomes concentrated around the rim. In contrast,

a dome charge (Lch = Ltot) produces negligible center peak. The gray dots

represent the experimental data in c within the 1.2 µm < x < 1.8 µm range
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CHAPTER 4. FINITE ELEMENT ANALYSIS OF REPLICA MOLDING

PROCESS

From the previous chapter, we know that the shape of the generated nanopatterned surface

charge from replica molding is highly dependent on the mold’s nanotexture. It’s reasonable to

conjecture that different nanotextures generates different friction patterns in the replica molding

process, which are then translated into congruent tribocharge distributions, for example, rings, par-

tial eclipses, and dumbbells. In this chapter, we present the finite element analysis of the replica

molding process. We start with the introduction of the cohesive zone model to simulate the de-

molding action realistically by including both vertical lifting and lateral cracking. We then build up

a mechano-triboelectric model for the nanoscale elastomeric contact electrification, which remains

valid all the way down in the sub-10 nm regime. The EFM is also implemented to complement the

established mechano-triboelectric model.

4.1 Simulation of the Vertical Lifting

Given the supporting evidences for the ring charge formation due to the replica molding of

PDMS nanocup replicated from PC nanocones, we sought the reason for such a spatially selective,

non-uniform tribocharging. Our immediate hypothesis was that the PDMS nanocup’s rim area

sustained the highest level of friction during the demolding process which, in turn, increased the level

of tribocharging in that region. To test the hypothesis, We performed a computational simulation

to estimate the non-uniform distribution of the maximum frictional stress over the interface between

the PDMS replica and the PC mold. Since the goal was to elucidate the spatiotemporal evolution of

frictional stress on the spherical interface, we adopted the continuum-based nonlinear finite element

analysis based on the cohesive zone model (CZM). All computational simulations were conducted

on ANSYS (Release 18.2). We scaled up the nanocup structure to the micrometer length scale
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while preserving all the geometric features due to the length-scale limit of the continuum-based

FEA program in ANSYS. The material and failure characteristics of the interface elements were

modeled from literature [85, 86, 87, 88]. In particular, the Young’s modulus and the Poisson’s ratio

were set to 1.8 MPa and 0.45, respectively. The CZM was defined with 15 kPa for the normal and

shear strengths and 330 µm for the separation limit. We assumed a clear interfacial failure without

any fracture of PDMS fibrils, based on the observation that the PC mold stayed usable and no

PDMS fracture has been detected after repeated molding/demolding.

4.2 Results of the Vertical Lifting Simulation

Due to the spherical shape of the PDMS-PC interface, the detachment occurred in a “mixed”

mode, which combines the pure crack opening and the sliding modes. So, to compute σf , the

frictional stress measured in Pa, we adopted the mixed mode cohesive zone model (CZM) in the

presence of the nonlinearities both in material and geometry. Figure 4.1a-c shows that as the PDMS

nanocup is gradually detached from the PC nanocone, the rim area experiences the maximum level

of frictional stress.

To assess the cumulative impact of the frictional stress, we also computed the frictional fracture

energy Gf , measured in J/m2, by integrating the area under the frictional stress-tangential sliding

curve over the whole process of demolding and plotted it in as a function of L/Ltot in Fig. 4.1d,

where L and Ltot are the arc lengths from the nanocup rim to the observation point and the

nanocup bottom, respectively, as shown in the inset. It confirms that the cumulative frictional

stress during the demolding process is concentrated near the rim, forming a peak covering up to

L ∼ 0.2Ltot, or ∼60 nm in our nanocup setup, before decaying rapidly. It agrees well with our

electrostatic modeling result which indicated that the surface charges formed a 55 nm-wide annular

strip from the rim. Over the mid-to-bottom portion of the PDMS nanocup, the lack of intense

frictional stress is likely to lead to a matching lack of tribocharging, rather than charging at the

opposite polarity which will only weaken the EHDL efficiency. This analysis result not only gives
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Figure 4.1 Computational analysis of demolding-induced friction. a-c The distribution of

the frictional stress computed by nonlinear FEA. The left and right columns

represent the top and cross-sectioned bird’s eye views of a PDMS nanocup

getting demolded from a PC nanocone, respectively. The color indicates σfn,

the frictional stress normalized by its overall maximum. a, b, c Describe the

PDMS nanocups in conformal contact with the PC nanocone, at the initial

stage of the vertical demolding (along the direction indicated by the arrows),

and at the starting point of the peel-off, respectively. The latter two clearly

show that the demolding action induces the highest level of frictional stress

around the nanocup’s rim.

further corroboration to our ring charge hypothesis but also provides useful insights for designing

more elaborate replica molding-based tribocharge nanopatterning.

4.3 Simulation of the Lateral Cracking

In the simulation of lateral cracking, the interface was initially assumed to be perfectly bonded

and then smoothly detached by incremental displacements. Each step generates tractions based

on the current interfacial displacements. For the stability of the computation, we adopted a pure
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penalty mechanism and displacement-controlled CZM simulation in which a large penalty term is

numerically imposed to ensure stable, smooth debonding. Thus, the interfacial displacements, not

external forces, act as the primary control factor.

In particular, the displacement loading applied during the interfacial separation results in a

combination of tractions in the interface-normal and interface-tangential (or lateral) directions, to

be denoted as τn and τt, respectively. In the mixed-mode bilinear CZM, which we adopted for

this work, the traction in each direction is related to the displacements of the interface by the

damage-tracking relation as:

τi = Kisi (1−Dm) , (i = n, t) (4.1)

where Ki is the cohesive stiffness. Dm is the damage parameter depending on the effective displace-

ment jump λ(t) ≡
√(

sn
scn

)2
+
(
st
sct

)2
at time t. Initially Dm = 0 meaning no interfacial damage. As

damage accumulates and exceeds peak (i.e., λmax > s̄i/s
c
i where λmax = max∀t[λ]),

Dm = min

(
1,

sci
(sci − s̄i)

(λmax − s̄i/sci )
λmax

)
, (i = n, t) (4.2)

si and sci are the current interfacial displacement and the displacement at the completion of debond-

ing, respectively; s̄i is the displacement at the peak traction.

In this way, the mixed-mode CZM relates the interfacial displacements to interfacial tractions

(forces) and also to the debonding failure modes, rendering the direction of the debonding a critical

parameter.
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Figure 4.2 (a) Illustrations of the demolding action in bird’s eye and cross-sectional views.

The red arrows indicate the direction of demolding. LE, TE, and IS stand for

the leading edge, trailing edge, and interstitial space, respectively. (b,c) The

numerically computed distribution of the normalized frictional stress (σfn) at

the initial and final stages of the demolding action in sample C, respectively.

(d) Numerically computed distribution of the sliding distance (normalized to

its maximum) due to the demolding action. (e) The normalized ∆VCPD of

one nanocup taken from Figure 3.6f. (f) The normalized sliding distance Lsn

along the c− c′ path in (d). It exhibits an asymmetric check mark-curve which

resembles the KPFM scans in Figure 3.6h,i.
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4.4 Results of the Lateral Cracking Simulation

To verify that these complex charge patterns were also generated by the same nanotexture-

dependent friction modulation process that we hypothesized for the ring-charge, we numerically

simulated the nanocup/nanocone demolding action. The simulation model differed from that for

sample A in imposing a lateral crack opening-type demolding initiated from one side. As shown in

Fig. 4.2a, the crack opens from the leading edge (LE) on the left and propagates to the trailing

edge (TE) on the right until the replica becomes fully separated from the mold. This new mode of

demolding was necessary because the low aspect ratio of the nanocone appears to allow tangential

sliding of one surface against the other, in addition to the vertical lifting, during the demolding. It

contrasts with the case of high aspect ratio nanocones, such as sample A, in which the demolding is

carried out mainly through the vertical lifting due to the high resistance to the sliding. Figure 4.2b,c

shows how the frictional stress evolved during the demolding of sample C, the one with the lowest

aspect ratio, from its PET mold. The inclusion of the lateral crack opening clearly concentrates

the frictional stress on the TE side. The resulting breakdown of the reflectional symmetry within

the nanocup agrees qualitatively with the experimentally observed asymmetry in Figure 3.6e,f.

The computed frictional stress patterns in Figure 4.2b,c, however, do not precisely match the

features of the measured surface potential distribution shown in Figure 3.6f in detail. In particular,

the sharp cusps in the TE area and the high contrast between the LE and TE areas clearly shown

in Figure 3.6f are missing in Figure 4.2b,c, respectively. Such a mismatch is inevitable since the

tribocharge’s final distribution pattern is determined by the level of frictional stress accumulated

throughout the demolding action at each point. Among many quantities that can be extracted

from the simulation results, we found that the tangential sliding distance reflects the cumulative

frictional stress most faithfully.

For facile comparison, we plotted the distribution of the tangential sliding distance, normalized

to its maximum, in Figure 4.2d, and juxtaposed the normalized potential distribution, extracted

from the KPFM scan of a single nanocup in sample C,as Figure 4.2e. They exhibit an improved

level of similarity, especially in the salient features mentioned above, confirming the tangential
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sliding distance as the key factor that can be used to predict the charge distribution pattern in the

nanoscale elastomeric CE.

To obtain more information, we extracted from the simulation result the normalized tangential

sliding distance Lsn along the centerline c−c′ in Figure 4.2d and plotted it in Figure 4.2f along with a

schematic diagram of the PDMS nanocup. The plot reveals an asymmetric check mark (X)-shaped

Lsn distribution inside a nanocup that can be qualitatively explained by our nanotexture-dependent

friction modulation hypothesis: During the lateral crack opening- dominated demolding of low

aspect ratio nanocones, the completely flat interstitial space (IS) outside the nanocup experiences

a moderate, mostly uniform level of tangential sliding which forms the pedestal at 0.25 < Lsn < 0.5

in Figure 3f. Once the demolding action reaches the leading edge of the nanocone, the replica

and mold becomes separated rapidly, as illustrated schematically in Figure 4.2a, without involving

much tangential sliding. In accordance, Lsn also drops rapidly from the IS-level, almost reaching

zero at the center of LE, and then gradually increases as the crack opening approaches the peak of

the nanocone and passes it. In contrast, TE experiences a significantly higher level of tangential

sliding as the surfaces have to brush against each other during their separation. Consequently, Lsn

not only recovers the IS level but also surpasses it, reaching the maximal level before returning to

the IS level at the edge of the nanocup (Figure 4.2f).

If the nanotexture indeed modulated the friction in accordance with the model described above

and the spatially modulated friction pattern were also faithfully converted into the tribocharge

distribution, then we must be able to observe the check mark-shaped asymmetric Lsn distribution

curve inside every low aspect ratio nanocup. Inspection of ∆VCPD in Figures 3.6h and 3.6i verifies

that it really is the case, enabling us to affirmatively answer not only the second question but also

the third, by singling out Lsn as the factor governing the final charge distribution pattern.
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Figure 4.3 (a) Top-view topography of sample B nanocups (scale bar: 500 nm). (b) A

sub-10 nm scale dip exists at the center of the interstitial area (scale bar: 150

nm). (c) AFM (dotted) and KPFM (solid) scans along the white dotted line in

(a). The black down- arrow indicates the position of the sub-10 nm scale dip.

(d) Magnified plots of ∆H and ∆VCPD within the shaded region of (c).
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Figure 4.4 (a) The topography and (b) the corresponding potential distribution scanned

over a 3×3 µm2-wide PDMS surface. Their profiles along the long diagonals of

the triangular lattice, which contain the ∼4 nm-deep recesses, are retrieved and

superimposed in (c) for facile correlation. Inside the 16 recesses, most surface

potential profiles exhibit the characteristic “asymmetric check mark-curve”,

re-affirming our mechano-triboelectric charge generation model. (Scale bars:

500 nm)
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4.5 Validity Range of the Mechano-triboelectric Model

To examine the range of validity of this nanotexture- controlled friction modulation and tri-

bocharge patterning model, we set a sub-10 nm-scale nanotexture as our next target. The AFM

scan in Figure 4.3a shows that ∼4 nm-deep recesses appear at the midpoints of the triangular

nanocup array’s long diagonal. For the one in Figure 4.3b, the aspect ratio is only 0.027, which

renders the region between the nanocup almost flat. We took KPFM scans along the dotted line

in Figure 4.3a and plotted it in Figure 4.3c,d in superimposition with the surface topography.

Inside the two ∼100 nm-deep nanocups, the potential changes exactly in agreement with the hy-

pothesized model, exhibiting the characteristic check mark-curve between the intermediate pedestal

level at ∆VCPD ∼ −4V. More remarkable is the appearance of a very similar check mark-curve in-

side the ∼4 nm dip, as shown in magnified spatial scale in Figure 4.3d. It indicates that spatially

varying CE can occur even at near-flat interfaces during their separation. Figure 4.4 shows that

this nanoscale CE phenomenon is repeated in all the 16 shallow dips within a 3×3 µm2 scan area.

Applicability of the model to such a small and slowly varying nanotexture reinforces its validity,

qualifying it as a full mechano-triboelectric model of the nanoscale elastomeric CE.

For completeness, we also tested the model’s validity in a nanotexture with much greater vertical

extent. We used a PET surface relief grating with its depth and pitch at 300 and 700 nm, respec-

tively (Figure 4.5). Despite its depth, the large pitch ensured a smooth demolding as described in

Figure 4.2a. The geometry’s simplicity also rendered the control of the demolding direction easier

and accurate, enabling us to deliberately reverse the direction and monitor its impact. The poten-

tial scans, superimposed with the topography for facile correlation (Figure 4.5c,f), clearly reveal

the asymmetric check mark-curves with their minima near the mid-LE, reaffirming the validity of

our model. Furthermore, they also reveal that the reversal of the demolding direction resulted in

the matching left-right flipping of the check mark-curve, which further corroborates our model.
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Figure 4.5 (a,d) The topography and (b,e) the corresponding potential distribution

scanned over a PDMS surface replicated from a PET surface with a ∼300

nm-deep 1D grating pattern. The left and right columns differ in their direction

of demolding which is indicated at the top. Their profiles along the dotted-blue

and solid-red lines are superimposed in (c) and (f), respectively, for facile com-

parison. The surface potential is clipped at some points due possibly to use

of the deeper-than-usual (∼300 nm) surface texture and denser triboelectric

charge generation resulted from it. Inside the grooves, the surface potential

profiles exhibit the characteristic “asymmetric check mark-curve” very similar

to those shown in Figs. 3.6h, i, and 4.3d. Furthermore, the potential profiles in

(c) and (f) are left-right reflected forms of each other, in full accordance with

the reversal of the demolding direction. The results re-affirm our mechano-tri-

boelectrification model. (Scale bars: 500 nm)
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Figure 4.6 (a) EFM images of sample C under different values of Vdc. A row of five

PDMS nanocups were probed for the shift in the resonance frequency ∆f0.

(b) A magnified EFM image at Vdc = −10 V reveals the asymmetry in charge

distribution. (Circle radius a = 250 nm.) (c) ∆f0 extracted from the left-hand

side (LHS) and right-hand side (RHS) of the circled nanocup in (a) as a function

of Vdc. The solid and dashed curves represent the parabolic curve fitting results.

The error bars represent the standard deviation obtained from five samples.

Error bars smaller than the symbols were omitted for visual clarity.

4.6 Electrostatic Force Microscopy

For a more quantitative validation of the mechano-triboelectric model, we refined the charge

characterization technique. The issue is that PDMS is an insulator without a clearly defined Fermi

level. Since KPFM relies its operation on the Fermi level difference, the electric potential measured

on insulators becomes strongly affected by the sample preparation and/or the measurement setup



www.manaraa.com

44

[89, 90], making direct determination of the strength and polarity of the measured potential very

difficult [91]. The relatively large thickness of the PDMS replica (> 1 mm) aggravates the difficulty

[92]. To address these issues, we adopted EFM which has been widely used for charge characteriza-

tion on insulators such as epoxy resin [72], nanocomposite [13], and adatoms [10]. By tracking the

electrostatic force generated by the surface charge, EFM can directly measure the charge’s polarity

and density even on highly insulating substrates [73, 11], complementing the results of KPFM.

Figure 4.7 The topography (a) and corresponding frequency shift (b) with varying DC

bias applied to the probe. The topography shows no significant variation other

than the slights shift caused by the scanning drift. In contrast, the frequency

shift varies considerably, showing a quadratic dependence on the applied DC

voltage.
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We conducted EFM on five PDMS nanocups in sample C. Figure 4.6a shows the resonance

frequency shift at varying values of Vdc. We found that the topography images exhibited no

significant variation other than slight shifts caused by the scanning drift (Figure 4.7a). In contrast,

∆f0 shifted considerably as a quadratic function of Vdc. Figure4.6b shows the map obtained at

Vdc = −10 V in a magnified view. It is clear that the frequency shift within a single nanocup

exhibits an asymmetric dumbbell pattern.

To quantify the difference in the surface charge, we plotted the frequency shifts in the left-hand

and right-hand sides of nanocups as a function of the applied probe bias, as depicted in Figure

4.6c. The solid and dotted lines were the quadratic fitting to the data, with the maxima at 1.33

and 1.29 V in the left-hand side and right-hand side, respectively. The frequency shift at zero bias

(Vdc = 0) was measured to be −1.3 and −4.5 Hz.

From eqs 2.10 and 2.11, the surface charge was determined to be positive and the absolute

value was 0.015 and 0.028 elementary charges per 10 nm2. In the estimation, we assumed that the

electrostatic coupling between the probe’s tip and the surface occurred over an area of 104 nm2, a

typical value [72] which also is approximately the area of the blue circle in Figure 4.6d. From the

subduplicate ratio between the ∆f0 values, it was estimated that the surface charge density in the

right (TE) side was
√

4.5/1.3 u 1.86 times higher than that in the left (LE) side. This difference

in the charge density within a single nanocup is consistent with the surface potential patterns

shown in Figure 3.6f. To quantitatively relate this tribocharge density ratio to the difference in

the sliding distance experienced by the LE and TE areas, we integrated the areas under the LE

(shaded) and TE (plain) portions of the normalized Lsn curve in Figure 4.2f. The ratio turns out to

be approximately 1.98 which is very close to the charge density ratio obtained above. This result

indicates that the sliding distance can be linearly related to the induced tribocharge density and

corroborates the mechano-triboelectric model quantitatively.
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CHAPTER 5. ELECTROHYDRODYNAMIC NANOLITHOGRAPHY

WITH NANOPATTERNED SURFACE CHARGE

This chapter presents an exemplary application of the nanopatterned tribocharge generated

from the replica molding process, that is, the electrohydrodynamic nanolithography (EHDL). The

main idea is to utilize the nanopatterned tribocharge as the source of the spatially-modulated

electric field to polarize the polymer film. We start with an overview of the conventional EHDL

methods, followed by an introduction of the our strategy for the EHDL process. The second and

third sections describe our proposed tribocharge-enable EHDL process in detail. The results and

numerical modeling of the EHDL process are then further discussed in collaboration with the

previous surface charge characterization. Finally, we describe a nanolens shape control method

inspired from the EHDL process.

5.1 Overview of Conventional EHDL Process

Electrohydrodynamic nanolithography (EHDL) is a polymer thin film patterning technique

utilizing the electrohydrodynamic instabilities [14, 15]. The electric field drives the polymer film to

form micro- or nano- scale patterns. In 1999, Chou and Zhang reported the lithography-induced

self-assembly [14], in which periodic arrays of pillars were formed from a originally flat thin film.

As shown in Fig. 5.1, a thin layer of polymer film is first spin coated on a silicon substrate. Then

a top mask with protruding patterns is placed above the polymer film, with a certain distance

determined by the spacer used. No external electric field is applied. The polymer film is then

heated above its glass transition temperature (Tg) to enable the formation of micro- and nano-

structures via the electrohydrodynamic instability. The whole system is then cooled down quickly

to room temperature to freeze the formed patterns.
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Figure 5.1 Schematics of the lithography induced self-assembly. Adapted from [14].

Figure 5.2 shows the optical graph and AFM image of the multi-domain closed-packed hexagonal

PMMA pillars formed using a mask with flat surface. In addition, many other patterns can be

formed with different shapes of protrusion on the top mask, for example, lines [15], squares [93],

rectangles [14], triangles [94], and rings [95]. This EHDL process is attractive once being invented

thanks to the advantage that the top mask is a flat and doesn’t have to be pre-patterned compared

with many other lithography methods. However, the origin of the electric field remain elusive. It’s

suggested that the electric field is likely from the trapped charges in polymer film or a thin layer

of thermally grown silicon oxide [96].

The EHDL process is also possible by applying electric field externally [15]. Figure 5.3a shows

the polymer film in between a flat top electrode and bottom electrode with external voltage applied.

The microstructures are formed due to the polymer instability. In Fig. 5.3, however, the top

electrode is topographically patterned so that the polymer instability occurs first in locations with

the smallest gap between the electrode and the polymer film. This leads to a positive replication

of the top electrode, as shown in Fig. 5.4.



www.manaraa.com

48

Figure 5.2 (a) Optical and (b) AFM image of the periodic polymer pillars array formed

in the lithography induced self-assembly. Adapted from [14].

Figure 5.3 (a) The external voltage applied leads to the polymer instability to form mi-

crostructures in between the top and bottom electrode, similar to the lithogra-

phy induced self-assembly. (b) The top electrode is topographically patterned

so that the polymer instability happens first at the locations with the smallest

gap. This leads to a positive replication. Adapted from [15].
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Figure 5.4 (a) The AFM image of the patterned grating structure corresponding to the

scheme in Fig. 5.3b. (b) The cross sectional scan shows a step height of 125

nm. Adapted from [15].
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5.2 Surface Pre-texturing for Tribocharge-enabled EHDL

In EHDL, liquid-phase polymer becomes polarized and attracted by spatially modulated electric

fields and forms out-of-plane structures upon solidification [14, 97, 15, 96, 98]. Therefore, the gap

between the source of the electric field and the polymer surface is one of the most important

factors in EHDL. Conventional EHDL utilizes a patterned electrode as the source of the electric

field and separately prepared dielectric thin film stripes as the spacers [14, 99]. Here we utilized

the tribocharged PDMS nanocups (Fig. 5.5a) as the source of the electric field. To place a gap

between them and the polymer surface, we selected a photopolymer, which undergoes low but

definite volume shrinkage upon exposure to UV irradiation [100], as the EHDL’s target material

and then textured the surface with a spatially modulated UV beam. The recesses in the resulting

texture provide the gaps.

Specifically, the UV-curable photopolymer (NOA73, Norland Inc.) was spin-coated on the

silicon substrate for 10 s at 500 r.p.m. and then 45 s at 3000 r.p.m., resulting in a thin film

with thickness of ∼ 40 µm. The photopolymer thin film was then exposed to a UV-two-beam

interference pattern (Fig. 5.5b) generated by the Lloyd mirror set-up employing a HeCd laser

(Kimmon) installed on a floated optical table. The pitch can be facilely controlled by the beam

incident angle. The power intensity of the interference pattern on the photopolymer thin film was

around 1 mW/cm2 (power meter, 2931-C, Newport). The dose applied to the photopolymer was

controlled by the exposure time, and hence the amplitude of the obtained one-dimensional surface

relief structure can be accurately tuned. Then the NOA73 surface became sinusoidally textured

due to the local volume shrinkage (Fig. 5.5c). The AFM scans of two different types of sample

sinusoidal textures on NOA73 are shown in Supplementary Fig. 5.6. Their profiles exhibit excellent

agreements with the theoretically predicted sinusoidal pattern, signaling a successful two-beam

interference. The strong crest-to-trough contrast, maintained even after several tens of minutes of

exposure, also attests to the overall integrity of the Lloyd mirror setup.
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Figure 5.5 Fabrication steps for tribocharge-enabled EHDL of photopolymer. a Liq-

uid-phase PDMS is poured onto the PC mold textured with a 2D triangu-

lar nanocone array. After thermal curing, the PDMS replica, textured with a

nanocup array, is peeled off. Its surface becomes selectively tribocharged during

this demolding process. b A UV-curable photopolymer (NOA73) is spin-coated

on a silicon substrate and exposed to a UV-two-beam interference pattern. c

The NOA73 thin film is textured sinusoidally with well-defined crest (C) and

trough (T) areas due to local volume shrinkage. d The tribocharged PDMS

nanocup array is placed on the sinusoidally textured NOA73 film. e NOA73

in the trough region is attracted upward by the spatially modulated electric

fields originated from the tribocharges and undergoes EHDL. NOA73 on the

crest experiences forces from both the capillary action and Coulomb attrac-

tion. f The cross-sectional profile defines the heights of the nanostructures in

the crest (hc) and trough (ht) areas along with d, the nanocup depth. g The

final UV-induced solidification of NOA73 and removal of the PDMS nanocup

array completes the tribocharge-enabled EHDL of NOA73
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Figure 5.6 Morphology of UV-induced sinusoidal texture These atomic force micrographs

show the morphologies of the UV 2-beam interference-induced sinusoidal tex-

tures made on NOA73. a and b show the top and profile views of a texture

with 900 nm pitch (10 degrees tilt angle in the Lloyd mirror setup) and 29±2.7

nm in depth. The dose and exposure time were 1.6 J · cm−2 and 60 mins, re-

spectively. c and d are from another texture with 2.1 µm pitch (2 degrees tilt

angle) and 99±11 nm in depth. The dose and exposure time were 2.2 J · cm−2

and 80 mins, respectively. The laser intensity was ∼ 0.45mW · cm−2. In b and

d, the red solid curves represent sinusoidal fitting results, which confirm the

sine-squared-nature of the interference intensity pattern in Lloyd setup.
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Note that even though the NOA73 thin film’s inner volume becomes well cured by the UV

exposure [101], a thin layer at its top surface remains fluidic and, hence, available for EHDL due

to the oxygen-induced inhibition of photopolymerization [102, 103, 104]. When the tribocharged

PDMS nanocup array was placed on the pre-textured NOA73 film (Fig. 5.5d), the troughs of the

sinusoidal texture provide periodic recesses in which the NOA73 surface is vertically separated from

the tribocharges by a submicron-scale gap.

Providing vertical separation through UV-induced texturing of the target material itself, rather

than by adding heterogeneous spacers [14, 99], leads to an additional merit. As illustrated in

Fig. 5.5e, f, the crest portion of the sinusoidally textured NOA73 is in direct contact with the

tribocharged PDMS nanocups and, hence, experiences both capillary action and tribocharge’s

Coulombic attraction. On the other hand, the trough portion, which is vertically separated from

the tribocharged PDMS surface, experiences only the Coulombic attraction. This fact will prove

useful in analyzing the EHDL results to corroborate the ring charge hypothesis.

5.3 Tribocharge-enabled EHDL

Upon completion of the photopolymer surface pre-texturing, we carried out the EHDL process.

As shown in Fig. 5.5d-g, we placed the tribocharged PDMS nanocup array on the sinusoidally

textured NOA73 thin film, left it for a preset period of time, and then applied the final UV

irradiation to fix the final shape. The completely cured NOA73 film was peeled off from the PDMS

surface and then examined by AFM.

Three different UV doses, 1.2, 1.8, and 3.6 J/cm2, were used for the two-beam interference to

produce different gap widths between the tribocharge and the NOA73 surface. AFM scans of the

resulting three samples, to be referred to as Samples A, B, and C, are shown in Fig. 5.7. They reveal

the impact of the UV dose on the final EHDL result. The scans from Samples A and B, shown as

Fig. 5.7a, d, respectively, indicate that the EHDL process generated nanocones arrayed on the top

of the sinusoidally textured NOA73 surfaces, at locations matching those of the PDMS nanocups.

The absence of parasitic protrusions on the NOA73 surface between the nanocones indicates that
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the flat, interstitial area between the nanocups’ apertures hosted little or no net tribocharge. The

nanocone array (∼750 nm in pitch) and the sinusoidal texture (∼2.6 µm in pitch) jointly constitute

a two-level hierarchy which will be useful for many applications, such as superhydrophobic surfaces

[105, 106].

The trough nanocones, however, cannot be unambiguously attributed to EHDL yet. Given

the high-level flexibility of PDMS [107], it is possible for the PDMS nanocup array to collapse

down to the sinusoidally textured NOA73 surface, make a conformal contact with it, and produce

the nanocones through capillary filling of the nanocups with the liquid-phase NOA73, rather than

through EHDL. We, however, reject the conjecture based on the observation that the heights of

the nanocones on the NOA73 crests (hc ∼25 nm as shown in Scan 3 of Fig. 5.7f) and troughs

(ht ∼70 nm as shown in Scan 1 of Fig. 5.7f) are very different while the capillary filling-induced

nanocones must exhibit similar heights. Moreover, the height of the crest nanocones is not just

different from that of the trough nanocones but actually shorter. It is almost counterintuitive given

the fact that the crests of the NOA73 texture corresponds to the destructive portion of the UV-

two-beam interference pattern, which leaves NOA73 more fluidic and deformable. On the other

hand, the trough portion of the NOA73 texture corresponds to the constructive part which cures

NOA73 more intensely. Yet, the NOA73 in the trough resulted in higher nanocones. Based on

these observations, we reject the conjecture of collapsed PDMS and attribute the trough nanocones

unambiguously to the tribocharge-enabled EHDL.
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Figure 5.7 EHDL-generated nanocones and nanovolcanos. AFM scans of EHDL results

obtained with the UV exposure dose of the two-beam interference lithography

set to a-c 1.2 J/cm2, d-f 1.8 J/cm2, and g-i 3.6 J/cm2. The first and second

columns show the final textures in the bird’s eye and top views, respectively.

The third column shows their cross-sectional profiles along the lines in the

second column. While the low dose, narrow-gap EHDL produced nanocone

array as shown in the first two rows, the high dose, wide-gap EHDL resulted

in a nanovolcano array as shown in the third row. (Scale bars: 1 µm)
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5.4 Evidence of Ring Charge Distribution

5.4.1 Underfilled Crest Nanocone

The crest nanocones are more intriguing since their height is less than the depth of the PDMS

nanocup (d ∼153 nm). It indicates that NOA73 failed to fill the nanocup completely. It was

surprising since the time required for NOA73 to fill the PDMS nanocup through capillary action is

< 1 s according to [108, 109]

t =
2µd2

Rγ cos θ
(5.1)

where µ is the viscosity of NOA73, d is the PDMS nanocup depth, R is the hydraulic radius of

the nanocup, γ is the surface tension of NOA73, and θ is the contact angle between NOA73 and

PDMS. In our experiments, we maintained the contact between PDMS and NOA73 for at least

2 min. Yet, the filling was incomplete. By assuming that the tribocharges were distributed only

around the nanocup’s rim, we can explain this underfilling as the result of the attraction from the

tribocharges which pulls down NOA73 toward the rim, counteracting the capillary flow toward the

inner cavity [110].

5.4.2 Nanovolcano Formation

The ring charge hypothesis can be further corroborated by the very unusual nanovolcano struc-

tures (Fig. 5.7g, h, i) produced by the tribocharge-enabled EHDL with the UV dose increased

to 3.6 J/cm2 (Sample C). Their biggest distinction from the nanocone structure is the nanocrater

with 10 nm-scale height. The formation of the nanocrater indicates that NOA73 was attracted

more strongly toward the rim of the nanocup’s aperture than its center. If the tribocharges were

distributed only along the nanocup’s rim, they can attract the photopolymer in that fashion, as

shown schematically in Fig. 3.1b. Under such a charge distribution, the nanocones in the troughs

shown in samples A and B (Fig. 5.7a, d) can be interpreted as the result of the nanocrater’s fusion

at the center of the nanocup due to the lower UV dose, which renders NOA73 more fluidic and

dispersive.
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Note that the height profiles in Fig. 5.7 could give the wrong impression that the sinusoidal

texture is deeper in Fig. 5.7 than in Fig. 5.7i even though the former sustained a lower UV dose

and, consequently, smaller shrinkage and shallower texturing. It can be explained by the fact that

the upward deformation of photopolymer in both EHDL and capillary filling requires additional

photopolymer. Therefore the nanocones in the trough in Fig. 5.7c achieved their height by lowering

the bottom level around them, thus generating the illusion of a deeper trough.

To further corroborate the ring charge hypothesis, we proceeded to reconstruct the tribocharge

distribution through iterative numerical simulations in which the model charge configuration was

adjusted until a good agreement was reached between the experimental and simulation results. The

two-dimensional model of the experimental setup is shown in Fig. 5.8a. The simulation is based on

Eq. 5.2 which describes the nonlinear electrohydrodynamic interaction between the electric field

and incompressible Newtonian fluid as [111, 112, 113]

∂h

∂t
=

∂

∂x

(
h3

3µ
· ∂P
∂x

)
(5.2)

where x is the lateral coordinate, h(x, t) the height of the polymer surface in y-direction, µ the

viscosity, and t the time. P is the pressure acting on the polymer surface and typically includes

three components: the Maxwell stress, the Laplace pressure, and the disjoining pressure. They

result from the Coulombic attraction, the interfacial tension, and the van der Waals interaction

between the polymer and the electrode surfaces, respectively. Since the disjoining force becomes

significant only when the polymer gets very close to the electrode, which is not the case in our

EHDL, it is excluded from the simulation.
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Figure 5.8 Numerical modeling of the EHDL process. a The 2D model for the numerical

EHDL simulation. b The simulated evolution of the nanovolcano structure.

The inset shows the revolved version of the final profile (marked as “F”). c

The simulation result obtained after lowering the viscosity of NOA73. The

nanocrater in b merged at the center to transform the nanovolcano into a

nanocone. d The simulation (dotted line) and experimental (solid lines) results

exhibit good agreements
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Regarding the Maxwell stress, conventional EHDL simulations often include only the vertical,

y-directed electric field [112]. Since our tribocharge-enabled EHDL setup utilizes non-uniform,

highly localized charge distributions, we considered both normal and tangential electric fields at

every point on the polymer surface. The overall pressure term becomes [114]

P = γ · ∂
2h

∂x2
+
ε0
2

(
ε2r1E

2
n ·
( 1

εr1
− 1

εr2

)
+ E2

t · (εr2 − εr1)
)

(5.3)

where the first and the second terms are the Laplace pressure and the Maxwell stress, respectively, γ

the interfacial tension of the polymer, En(Et) the strength of the electric field normal (tangential) to

the polymer surface, εr1,r2 the relative permittivity of the material, and ε0 the electric permittivity

in vacuum.

We solved the governing equation numerically by integrating it over time t. The parameters

were set to the values that are either measured or obtained from the literature. In particular, µ

and γ of NOA73 were set to 130 cps and 0.04 N/m [115]. Along the x-direction in Fig. 5.8a,

the computational domain measured 4 µm and was discretized into 150∼230 computation points.

Along the h-direction, the extent was varied from its minimum at 100 nm, i.e., the gap between

the PDMS replica and the NOA73 surfaces, depending on the shape of the charge distribution

within the nanocup, which was modeled to exhibit an arc or a super-Gaussian profile. Since the

simulation was carried out in 2D, the model charge distribution was configured to reproduce the

3D distribution pattern after revolution about the center axis. For example, a simple ring charge

distribution was translated into two point charges located symmetrically about the center axis of

the nanocup. More pairs were added to model charge distributions covering the nanocup’s cavity

wall. We computed the electric fields by applying Coulomb’s law along the surface profile of the

polymer and decomposing the result into components tangential and normal to the surface. Once

the pressure term in Eq. 5.3 was evaluated, it was substituted into the right hand side of Eq. 5.2

which, in turn, got integrated in time domain using Newton-Rahpson method. The integration time

was set to 5.2 ps empirically. All computations were performed with Matlab (R2013b, Mathworks

Inc.).
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Figure 5.5b shows the nanovolcano formation as a function of time. Again, the best agreement

between the simulation and experimental results was achieved when the tribocharge distribution

was set to the form of a ring around the rim of the PDMS nanocup. Figure 5.5b clearly shows that

the nanovolcano initially appears as an annular ridge induced by the ring charge (marked as “I”),

becomes taller and thicker, and then begins to merge at the center. At that point, the balance

between the upward pulling Coulombic attraction and the laterally broadening Laplace pressure

becomes critical. Depending on their relative strengths, the final state (marked as“F” can be either

a nanocone or nanovolcanos with varying values of crater height. For example, Fig. 5.5c shows

the simulation result obtained after the µ and γ values changed to 100 cps and 0.08 N/m [115],

respectively, which corresponds to the case of low-UV-dose and less-viscous NOA73. Even though

the initial profile is identical to that in Fig. 5.5b, the final profile exhibits only a small dip at

the center due to the dispersion and merging of the crater at the center. By iteratively adjusting

the relative strengths of the Coulombic attraction and Laplace pressure in the simulation, we could

reproduce the experimental results very closely. For instance, Fig. 5.8d shows the simulated surface

height profile very closely agrees with those of the three nanovolcanos (Fig. 5.7i, Scan 1).
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Figure 5.9 Tribo-EHDL on NOA73 surfaces corrugated through replica molding a Liq-

uid-phase PDMS is poured onto the PC mold textured with a 2D triangular

nanocone array. After thermal curing, the PDMS replica, textured with a

nanocup array, is peeled off. Its surface becomes selectively tribocharged dur-

ing the demolding process. b A PDMS mold is replicated from Ronchi gratings.

c The PDMS replica is placed in contact with the spin-coated NOA73 film. d

The PDMS replica is removed after the partial curing of the NOA73 with UV

light. e The tribocharged PDMS nanocup array is placed on the textured

NOA73 film. f NOA73 in the trough region is attracted upward by the spa-

tially modulated electric fields originated from the tribocharges and undergoes

EHDL. g The final UV-induced solidification of NOA73 and removal of the

PDMS nanocup array complete the tribocharge-enabled EHDL of NOA73. h

AFM image of NOA73 surface with a 1.7 µm-pitch linear corrugation (Scale

bar: 1 µm). i AFM image of NOA73 surface with a 5 µm-pitch linear corruga-

tion (Scale bar: 4 µm).
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To further validate the working principle of the tribocharge-enabled EHDL and its robustness,

we repeated the process in a modified setup and checked if the nanovolcanos could still be formed.

Specifically, we tried to induce the nanovolcano formation on an NOA73 surface with linear cor-

rugations, instead of the sinusoidal ones formed with the two-beam interference. The preparation

steps are shown in Fig. 5.9. First, a PDMS mold was replicated from Ronchi gratings (600 LPMM,

MaxLevy; 200 LPMM, Edmund Optics) (Fig. 5.9b). Then the PDMS mold was placed in contact

with the spin-coated NOA73 film (Fig. 5.9c) and peeled off after the NOA73 film was partially

cured under the broadband UV light (Bluewave 200, Dymax) at 15 mW/cm2 for a preset period of

time (Fig. 5.9d) and examined by AFM (Fig. 5.9h and i). Owing to the high oxygen permeability

of PDMS and the intrinsic oxygen inhibitory nature of NOA73, the top layer of the NOA73 surface

remained fluidic and patternable. In addition, the NOA73 surface was uniformly cured in this

scenario since the amplitude of the corrugation (around 60 nm) is much smaller than the thickness

of the PDMS mold (2 ∼ 3 mm). The tribocharged PDMS mold with nanocups was later placed

in contact with the partially cured NOA73 surface to induce the tribocharge-enabled EHDL (Fig.

5.9e and f). Upon its complete curing and detachment from the PDMS mold, the NOA73 structure

was AFM scanned (Fig. 5.9g). Using samples prepared through such a disparate procedure, we

tried to test whether (1) The tribocharge-enabled EHDL works, (2) The UV dose-controlled switch-

ing between nanocone and nanovolcano works. Figure 5.10 4 shows the result obtained from the

NOA73 surface pre-textured at 1.7 µm pitch. The upper row (a and b) corresponds to lower dose

exposure (1.8 J/cm2) and the lower row (c and d) corresponds to higher dose exposure (2.1 J/cm2).

As emphasized by the dotted circles in Fig. 5.10d, the formation of center dimples and, hence,

nanovolcanos occurred only for higher UV dose, higher viscosity case. The trend was repeated in

Fig. 5.11 which was obtained from the NOA73 surface pre-textured at a wider, 5.0 µm pitch. Still,

the upper row (a and b) corresponds to lower dose exposure (1.35 J/cm2) and the lower row (c and

d) corresponds to higher dose exposure (1.8 J/cm2). The dotted circles in Fig. J/cm2d indicate

that the nanovolcano formation occurred only in the higher viscosity sample prepared under higher

UV dose.
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Figure 5.10 Tribo-EHDL on NOA73 surface with a 1.7 µm-pitch linear corrugation a-d

show the results of performing tribocharge-enabled EHDL on an NOA73 sur-

face textured with replica molding and partial UV curing, rather than the UV

laser two-beam interference adopted in the main text. a, b are made with 120

s exposure under 15 mW · cm−2 intensity, or a dose of 1.8 mW · cm−2. c, d

are made with 140 s exposure under 15 mW · cm−2 intensity, or a dose of 2.1

mW · cm−2. In the trough of d, which is more viscous due to the higher dose,

the formation of nanovolcano is observed (dotted circles).
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Figure 5.11 Tribo-EHDL on NOA73 surface with 5 µm-pitch linear corrugation a-d show

the results of performing tribocharge-enabled EHDL on an NOA73 surface

textured replica molding and partial UV curing, rather than the UV laser

two-beam interference adopted in the main text. a, b are made with 90 s

exposure under 15 mW · cm−2 intensity, or a dose of 1.35 J · cm−2. c, d are

made with 120 s exposure under 15 mW · cm−2 intensity, or a dose of 1.8

J · cm−2. In the trough of d, which is more viscous due to the higher dose,

the formation of nanovolcano is observed (dotted circles).
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5.5 Shape Control of Nanolens

Inspired from the underfilled crest nanocones in Fig. 5.7f and i, we found that the extent of

filling can be well controlled with the applied UV dose before placing the PDMS mold into contact

with the NOA film. The modified fabrication process is depicted in Fig. 5.12.

Figure 5.12 Scheme of the fabrication of the curvature-controllable nanolens. (a) Spin–

coated NOA film partially cured with UV light. (b) PDMS nanocups replica

molded from PC nanocones. (c) The PDMS nanocups in contact with par-

tially cured NOA film. (d) Cross-sectional view showing the underfilling of

PDMS nanocups. (e) Curvature-controllable nanolens array.

The UV curable photopolymer (NOA 73, Norland Inc.) was spin coated on a glass substrate and

then partially cured by a controlled UV dose (Figure 5.12a). The poly(dimethysiloxane) (PDMS,

Sylgard 184) nanocups (period ∼750 nm, diameter ∼ 500 nm, depth d ∼ 150 nm), replica molded

from the polycarbonate (PC) nanocones array (Figure 5.12b), were placed in contact with the

partially cured NOA film (Figure 5.12c). As shown in the cross-sectional view (Figure 5.12d), the

PDMS nanocups were underfilled with NOA. The UV dose applied for partial curing determines

the extent of filling, and hence, the curvature of nanolenses. The formed NOA nanolenses were

then completely cured, resulting in the nanolens array with controllable curvature (Figure 5.12e)

after peeling off the PDMS mold. The fabricated nanolens array was then examined with atomic
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force microscopy (AFM) in the tapping mode, with the height in the center of nanolens denoted

by h (Figure 5.12e).

In Figure 5.13a, the height in the center of nanolenses is plotted over the UV dose applied

for partial curing (Figure 5.12a). In the shaded region, the height changes linearly the UV dose,

with a slop of −68.8nm/(J/cm2). With low UV dose applied, the PDMS nanocups were fully filled

with NOA, leading to full height NOA nanolenses, as shown in the AFM image (Figure 5.13b).

With increasing level of UV dose applied, the height decreases monolithically, as evidenced by

the AFM images in Figure 5.13c-e. The same color bar is used to show the difference in height.

The corresponding cross-sectional profiles of nanolenses are shown in Figure 5.13f, clearly showing

the curvature evolution with increasing level of UV dose applied. The nanolens profiles are fitted

to a perfect sphere, showing radii R of 343, 548, 817, and 2813 nm. With geometrical optics,

the corresponding f -number, defined as f/# = f/D = R/(n − 1)/D, is 1.2, 2.0, 2.9, and 10.0,

respectively (n = 1.56, refractive index of photopolymer; D = 500 nm, base diameter of lens).

Although the base diameter of the nanolenses fabricated is around 500 nm, the fabrication can be

also extended to microscale, enabling fabrication of microlenses with controllable curvature.
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Figure 5.13 (a) Height in the center of nanolenses over the UV dose applied for partial

curing. (b) AFM image of full height nanolenses without or low UV dose ap-

plied. (c-e) AFM images of nanolenses with decreasing height as a function of

the UV dose applied. Scale bars, 1 µm. (f) The cross-sectional profiles of four

types of representative nanolenses with different curvatures, corresponding to

the AFM images shown in (b)-(e).
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CHAPTER 6. CONCLUSIONS AND OUTLOOK

6.1 Summary

In conclusion, we developed a replica molding based technique to produce nanopatterned tri-

bocharges on highly flexible PDMS surfaces capable of forming intimate contact with non-flat

surfaces. It is a simple and effective technique which accomplishes both tribocharge generation

and patterning in a single operation of replica molding. By generating the charge directly through

triboelectrification, this technique also eliminates the need for external supply of electric charge,

which often necessitates metallization of the elastomer surface. It also provides well defined targets

for the characterization, modeling, and analysis of the nanoscale contact electrification due to its

strong nanotexture-dependence.

We then systematically investigated this intriguing phenomenon with a variety of scanning probe

microscopic techniques, for example, AFM, KPFM, and EFM, electrostatic modeling, and finite el-

ement analysis and established a mechano-triboelectric model. The resulting mechano-triboelectric

process model showed that the surface nanotexture controls the tribocharge’s distribution pattern

by inducing spatially modulated friction during the demolding action. On the basis of the com-

puter simulation results of the demolding action, we identified the tangential sliding distance as

the key factor that can be used to predict the tribocharge’s final distribution pattern. The model

proves remarkably versatile with its prediction range covering all the way down to sub-10 nm scale

surface textures with aspect-ratios as low as 0.027. The replica molding-induced CE process itself

also proved very useful as a highly scalable technique to create unconventional, complex charge

patterns, as evidenced by the ring-, partial eclipse- and dumbbell-shaped charge distributions.

Finally, we integrated the generated nanopatterned surface charge into the EHDL process.

In the conventional EHDL, which relies on electric fields generated by patterned electrodes, the

polymer either forms an array of nanopillars under the electrode’s surface pattern or simply mirrors
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the pattern itself through merging of the nanopillars, limiting the feature size to that of the electrode

pattern or the characteristic length of the electrohydrodynamic instability. Both are generally at

micron-scales. Using the replica molding-induced nanopatterned tribocharges as the source of the

electric fields, we have greatly reduced the EHDL’s feature size. For instance, this work produced

a highly regular array of submicron-scale nanovolcanos by decorating plain nanocones with 10 nm-

scale nanocraters. With careful balancing of capillary action and Coulombic attraction, this tribo-

electrohydrodynamic lithography will become a versatile tool for fabricating functional materials

and meta-surfaces.

6.2 Suggested Future Work

In this dissertation, the morphology of the PET and PC master molds is limited to nanocone,

nanocups, and lines. One intriguing future direction is to try other different shapes of master

patterns for the replica molding, for example, pyramids and squares. This not only may lead to

more interesting charge patterns but also can be used to further test the validity of our mechano-

triboelectric model. In addition, instead of replica molding between polymer and polymer, it’s

also worth trying the contact electrification between semiconductors or metals and polymer. For

example, the anisotropically etched silicon pyramids or epitaxially grown copper nanocrystals with

multiple facets could be adopted for replica molding with PDMS.

Another future direction is the possible applications of the generated surface charge distribution.

Given the highly non-uniform nanopatterned surface charge distribution, one possible application

is the self-assembly of nanoparticles, known as nanoxerography [41] or electrostatic assembly [116,

117, 118]. In addition, the longevity of the generated tribocharge should be studied since the replica

molding process is very different from the conventional contact electrification, in which completely

cured two surfaces are brought into contact and then separated [1]. In our replica molding process,

however, one side (PDMS) is in liquid phase in the beginning and then thermally cured and peeled

off. The interfacial contact could be more intimate and the physical mechanism might also be

different.
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Finally, the proposed shape control of nanolens could be extended to cylindrical nanocavities

so that the capillary filling can be accurately controlled. Combined with a spatial light modulator

for accurate spatiotemporal control of the light distribution, we could develop a grayscale nanoim-

printing method capable of printing heterogeneous microscale grains of nanoblocks on the same

substrate.
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